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Abstract
This project, Rattlesnake, was an attempt to create a Python-to-Rust compiler.
While the attempt was ultimately unsuccessful, there are meaningful lessons to
be learned from the experience.

This report will discuss the motivation behind this project, the expected chal-
lenges, the unexpected challenges, and the lessons learnt. It will also discuss the
artefacts produced, and the reasons why their approaches would not scale to a
full compiler.

1 Introduction
1.1 Background
Python is a popular programming language, known for its ease of use and
flexibility. However, it is also known for its speed; or rather, lack thereof.
CPython, the official and most commonly used implementation of Python, is
an interpreter, a much slower model of code execution than the traditional
compile-execute model used by languages such as C and Rust. Alternatives, such
as PyPy or Cython, have been created to bridge the gap, but each has its own
trade-offs (addressed in section 2.7, Why a Python-to-Rust compiler would be
useful). Rattlesnake was an attempt to provide a different set of trade-offs, by
translating Python code into Rust code, which can then benefit from Rust’s rich
ecosystem.
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1.2 Aim
The aim of Rattlesnake was to provide a compiler from Python to Rust, allowing
Ahead-Of-Time (AOT) compilation and optimisations to be performed on Python
code, while not requiring the programmer to learn new syntax. This would have
been achieved by translating Python source code directly into Rust, deferring
most of the type-checking stage to the Rust compiler.

The eventual goal of Rattlesnake was to infer types from Python source code,
and allow using Python types from within the compiled Rust output. This
would allow Rattlesnake to be usable on (almost) any Python code base with no
changes to the source code, and would require minimal changes to be made to
the source code in most other cases.

Additionally to the core compiler, Rattlesnake would have provided a run-time
Python library poly-filling types, functions, and macros from Rust’s standard
library, allowing writing optimised Rust code from within Python, before trans-
lating it to Rust. This would have the primary advantage of allowing REPL
iteration, while still providing the speed of Rust once compiled.

1.3 Objectives
The objectives of the project were as follows:

1. Create the core Rattlesnake compiler, which would take Python source
code as input, and produce Rust source code as output.

2. Create the run-time Rattlesnake library for Rust, which would provide
various standard Python types and functions, enabling most code to be
translated without changes.

3. Create the run-time Rattlesnake library for Python, which would provide
access to various standard Rust types, functions, and macros, and act as a
poly-fill for interpreted Python code, as well as allowing type-checkers to
understand Rattlesnake code.

4. Create the associated documentation for the Rattlesnake compiler and
run-time libraries.

5. Create these documents as part of the dissertation project.

1.4 Outcome
In all, 3 working prototypes of the Rattlesnake compiler were produced, along
with an experiment which attempted to leverage the py2erg project alongside
the Erg compiler to provide type information to the Rattlesnake compiler. Each
of these will be discussed further in their own sub-sections of the Artefacts
section.

1.5 Product Overview
1.5.1 Scope

The scope of Rattlesnake was to take as input arbitrary Python 3 source code,
and translate that source code into Rust source code - or raise an error if the
input contains unsupported features. The output Rust code would be able to be
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compiled into a native executable, which could then be run without a Python
interpreter. The output code would depend on the library rattlesnake ,
which would have been a Rust library providing various standard Python types
and functions.

There would also have been a Python library rattlesnake , which would
provide various standard Rust types, functions, and macros, and could be used
by Python code in order to produce more optimised or efficient Rust code.

1.5.2 Audience

Rattlesnake was intended to be a tool for Python developers who want the
speed and memory-efficiency benefits of Rust. It would also serve as a rapid
prototyping tool for Rust projects, and a way to simplify the distribution of
Python projects as a single executable which would reduce the effort required
for deployment.

2 Background Review
2.1 What is a compiler?
At its core, a compiler is a program which takes in code written in one language,
and outputs code written in a different language. Most commonly, a compiler
will either translate code into machine code (such as in C, C++, and, Rust, to
name a few), in order for the program to run natively on a particular machine,
or will translate code into machine-agnostic byte-code (such as in Java, Python,
and C#), in order for the program to run on a virtual machine, an intermediate
program which can run natively on many machines and which interprets the
byte-code.

Another common use of compilers is to translate code between two high-level
languages, for example Vala and V, which both compile to C, or TypeScript,
which compiles to JavaScript. This is also known as a ‘transpiler’.

2.1.1 Aside: Transpilers

A transpiler is a specialised term for a compiler which translates between two
languages which are at a comparable level of abstraction (Fenton, 2012). For
example, a compiler from C to assembly would not be considered a transpiler,
as assembly is a much lower-level language than C, but a compiler from C++
to C could be considered a transpiler, as both C and C++ allow for many
operations to be performed in a single statement. While Rattlesnake fits within
this category (as Python and Rust are both considered high-level languages),
the term ‘compiler’ will be preferred over ‘transpiler’ throughout this document,
except when referring to sources which use the term ‘transpiler’.

2.2 How compilers work
Typically, a compiler will work in several stages, each of which transforms the
input code in some way. While the exact stages vary from compiler to compiler,
the most common steps are:
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1. Parsing: The input code is read and transformed into a more easily
manipulable form, typically an Abstract Syntax Tree (AST).

There are several approaches to this process, but the two most common
are:

• Tokenisation/Parsing
– Often performed using the tools Lex (from ‘Lexical analysis’,) and

Yacc, leading to this form often being referred to more generally
as Lex/Yacc parsing

– This parsing method first uses a tokeniser (or ‘lexer’) to transform
the input code into tokens - the fundamental building blocks of
the language - and then a token stream parser to transform
the tokens into the internal representation. In the tokenisation
(‘lexing’) step, the input code is split into tokens using regular
expressions; in the parsing step, a Context-Free Grammar (CFG)
- in the case of Yacc, specifically an LALR(1) (‘look-ahead (1
token), left-to-right, right-most derivation’) grammar (Johnson,
1978) - is used to transform the token stream into the AST.

• Parsing Expression Grammars (PEGs), which are a more modern ap-
proach to parsing, created by Ford (2004), where no tokenisation step
is required. In PEG parsing, the grammar defines an unambiguous
parse order, which means that implementing a PEG parser based on
a grammar is much simpler than implementing a Lex/Yacc parser.
In particular the use of ordered-choice operators in PEGs, combined
with the fact that backtracking is disallowed, means that PEGs are
very closely related to the actual code necessary to execute the parse
for that language.

2. Transformation: The AST is transformed in various ways, typically being
translated into an intermediate representation (IR) which can be manipu-
lated outside the confines of the syntax of the input language.

3. (Optional) Optimisation: The IR is optimised through various methods,
including dead code elimination, constant pre-computation, function in-
lining, and instruction reordering to take advantage of the cache.

4. Code generation: The IR is transformed into the output language. For
machine languages this is often as simple as iterating over the IR and
outputting the corresponding object code, but for higher-level languages
it may involve reconstructing an AST for the output language, and then
outputting that AST as code.

2.3 Classifications of grammars
In formal language theory, grammars are classified into one of four types, based
on the simplest automaton which can recognise them. This classification is
known as the Chomsky hierarchy, and is as follows:
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Table 1: The Chomsky hierarchy

Classification Language Recognising automaton
Type 0 Recursively enumerable Turing machine
Type 1 Context-sensitive Linear-bounded

non-deterministic Turing
machine

Type 2 Context-free Non-deterministic
push-down automaton

Type 3 Regular Finite-state automaton

The Chomsky hierarchy is a strict hierarchy; all type 3 grammars are type 2
grammars, all type 2 grammars are type 1 grammars, and all type 1 grammars
are type 0 grammars.

2.4 What is a Parsing Expression Grammar?
A Parsing Expression Grammar (PEG) is a style of grammar created in 2004 by
Bryan Ford. PEGs do not fit neatly into the Chomsky hierarchy; according to
Ford (2004),

These properties [that 1. PEGs can express LL(k), LR(k), and ‘many
others, including some non-context-free’ languages and 2. all PEGs
can be parsed in linear time] strongly suggest that CFGs and PEGs
define incomparable language classes.

Additionally, Loff, Moreira and Reis (2020) have shown that there can be no
pumping lemma for PEGs, and that there exists a PEG for a P-complete language
(under logspace reductions), in contrast to context-free languages, which cannot
be P-complete under logspace reductions ‘unless P ⊆ NC2’.

The pumping lemma is a lemma which states that, for all regular or context-free
languages, there exists a ‘pumping length’ p ≥ 1 such that any string of that
length or longer can be ‘pumped’ - that is, split into a number of sub-strings (5
for context-free languages, 3 for regular languages); for context-free languages
s = uvwxy where s is a string in the language of at least p symbols, vx is not
empty, vwx is at most p symbols long. Given these properties, the Pumping
Lemma states that uviwxiy is also in the language for all i ∈ N0.

That no pumping lemma can exist for PEGs shows that they are fundamentally
different from context-free grammars, and that they are able to express languages
which context-free grammars cannot.

NC2, or ‘Nick’s Class’, is a complexity class which is often considered to be a
strict subset of P (the class of problems which can be solved in polynomial time),
and is related to problems which are efficiently solvable on a parallel computer
(Arora and Barak, 2009).

PEGs are less common than Context-Free Grammars (CFGs), but have a number
of advantages over CFGs when parsing machine languages:
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• PEGs always have a single, unambiguous parse for any input. This is a
significant advantage over CFGs, as it means there is no need to learn
ambiguity resolution rules, and the parse tree can (theoretically) be used
directly as the AST.

– This also serves as a speed advantage - ‘Ambiguity in CFGs is difficult
to avoid even when we want to, and it makes general CFG parsing
an inherently super-linear-time problem’ (Ford, 2004).

• PEGs are recognition-based, rather than generation-based. This is in
contrast to most of language theory, but directly in line with most practical
language applications within computer science. This also means that PEGs
can be translated into parsers almost directly; Ford notes that ‘A PEG
may be viewed as a formal description of a top-down parser’.

2.4.1 A small PEG example

Before continuing, it may be useful to illustrate the use of PEGs with a small
example.

In table-top games, it is common to represent dice rolls with a textual notation
indicating which dice to roll, and how to modify the result (if applicable). For
example, the simplest notation is d6 , which simply means ‘roll (one) six-sided
die’.

This notation can get arbitrarily complex (I have created a moderately-complete
grammar for this, which is included in Appendix A), but here are some more
simple examples:

Table 2: Examples of dice expressions

Dice expression Meaning Image Shown result

d6 Roll one six-sided
die

4

2d6 Roll two six-sided
dice, and sum
them (very
common in board
games)

7 (1 + 6)
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Dice expression Meaning Image Shown result

4d6 Roll 4 six-sided
dice, and sum
them

18 (5 + 3 +
partially-
obscured 4 +
partially-
obscured 6)

3d6 + 2 Roll 3 six-sided
dice, sum them,
and add 2

16 (6 + 2 + 6 +
modifier 2)

2d4 Roll two
four-sided dice

7 (3 + 4)

Such expressions can be parsed with a PEG, such as that in Appendix A (in the
PEG syntax used by the pest parser generator). Under this grammar, the
expression 3d6 + 2 would be parsed as follows:

(Expression
(Expr

(MinMaxTerm
(AddTerm

(MulTerm
(Repeat

(Number "3")
(DieRoll

(Number "6"))))
(AddOp "+")
(MulTerm

(Repeat
(Number "2"))))))

(EOI ""))

Notice that there is no explicit tokenisation step in a PEG parse; because PEG is
recognition-oriented, rather than the traditional generation-oriented grammars,
tokenisation can be performed at precisely the point where it is needed, rather
than as a separate step. This has the additional advantage of allowing for ‘soft
keywords’ in programming languages, a concept where a keyword is only a
keyword in certain positions, and in all other positions is free to be used as an
identifier.

For example, in Python, the switch to a PEG parser (introduced optionally in
Python 3.9, but made the sole parser in 3.10) allowed for the match construct
to be introduced - match is a soft keyword, meaning that it is only a keyword
when it is part of a match statement. This was important for backwards
compatibility, as match was already a common identifier in Python code,
particularly when dealing with regular expressions - and thus it would not be
reasonable to make match a ‘hard’ keyword.
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2.5 Python
Python is ‘the most popular language in Machine Learning’ (Lunnikivi, Jylkkä
and Hämäläinen, 2020), due largely to the fact that ‘[it] tends to be readable
and concise, leading to a rapid development cycle’ (Behnel et al., 2011).

Its ease-of-use also makes it a popular choice for scripting and other short
programs. For example, approximately 40% of respondents to the Advent of
Code surveys from 2018 to 2023 used Python as their primary language for the
event (Heijmans, 2023).

Python, however, is not without its drawbacks. The most significant of these
is its speed; as an interpreted language, Python is significantly slower than
compiled languages such as C or Rust. Efforts have been made to improve its
speed, such as the PyPy project, but it is still a significant way behind the
performance of compiled languages.

2.6 Rust
Rust, the most loved programming language in the StackOverflow Developer
Survey every year since 2016 and the third most loved language in the year of
its release, 2015 (Stack Overflow, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022,
2023), is ‘a systems programming language meant to supersede languages like
C++’ (Bugden and Alahmar, 2022). It is designed around enforcing memory
safety without the use of a garbage collector, but its data model is also well-
suited to most other kinds of safety, including thread-safety and type-safety,
as well as Software Fault Isolation and Information Flow Control analysis
(Balasubramanian et al., 2017), all without sacrificing performance.

Additionally, Rust has a strong focus on ergonomics, having a powerful macro
system and a standard build tool, Cargo, which also handles dependency man-
agement (from a centralised repository, crates.io) and testing.

2.7 Why a Python-to-Rust compiler would be useful
CPython (the official Python implementation, and the most commonly used
one), being an interpreter, is significantly slower than Ahead-of-Time (AoT)
compiled binaries such as those produced by the compilers for languages such as
C or Rust. This is due in part to the fact that the interpreter must maintain its
own state in addition to that of the program being run, and also to the fact that
while AoT-compiled binaries are optimised before they begin to run, CPython
must instead attempt to optimise the code during execution, and must do so
again every time the code is run.

Alternatives to CPython, such as PyPy or Cython, have been created in an
attempt to improve the speed of Python programs; while these are certainly
faster than CPython, they each have their own trade-offs. PyPy, for example,
is a Just-In-Time (JIT) optimising interpreter, meaning that it can compile
so-called ‘hot paths’ - those which are run more frequently than others - either
directly to machine code, or (more commonly) to specialised instructions within
the interpreter. Unfortunately, these optimisations take time to perform, and so
PyPy is not suitable for short-lived programs. Cython, on the other hand, is a
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hybrid between Python and C, and can be used to generate C extension modules
and even convert a source file directly into C code. However, Cython-generated
code, by default, does not greatly optimise over CPython - as Cython aims to
provide 100% compatibility with CPython, and will not infer specific types except
in certain patterns, it is up to the programmer to explicitly declare functions
and variables using either cdef or cpdef , meaning that the source code is
no longer valid Python.

A Python-to-Rust compiler would allow for the best of both worlds: the ease-of-
use and rapid iteration cycle of Python, and the performance and optimisations
of Rust. This would be especially useful in the context of Rapid Application
Development (RAD), where the ability to quickly prototype and iterate is crucial,
but performance may also be a consideration.

2.8 Why Rust is a viable compile target
Rust, unlike C or C++, has a rich type system with plenty of expressive power,
and its standard library and ecosystem share this expressiveness. Additionally,
many of Rust’s core features, such as its iterator-based for-loops and its pattern
matching, are similar to those found in Python, and so a lot of Python’s
expressiveness can be translated directly into Rust in a way that would not be
possible with many other languages.

3 Methodology
3.1 Software development process
The software development model I chose for Rattlesnake was the Rapid Applica-
tion Development (RAD) model of development.

RAD is a methodology which focuses on rapid prototyping and iteration. It is a
form of agile development, conforming strictly to the Agile Manifesto (Beck et
al., 2001), and is particularly suited to projects where the requirements are not
fully known at the start of the project, or may change as the project progresses.

I chose RAD primarily because it has a significantly reduced overhead compared
to other methodologies, such as the mountain of documentation associated with
scrum, or the strict requirements of waterfall. It also allows for a more flexible
timescale, as each iteration can be as long or as short as necessary.

Over the course of the project, I produced three compilers (and one experiment):

• Version 1, in Python, using the built-in module ast (section 4.1)
• Version 2, in Rust, using a custom PEG grammar (section 4.2)
• Version 3, in Rust, using the rustpython_parser library (section 4.3)
• What would have been version 4, in Rust, attempting to use the py2erg

and erg_compiler libraries (section 4.4).

3.2 Technologies used
The primary technologies used in the development of Rattlesnake were Python
and Rust, along with the libraries pest and rustpython_parser . Addi-
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tionally, argument parsing was performed using the clap library, and the
project was built using cargo .

This document was written in Markdown, and converted to PDF using Pandoc
(via PDFLaTeX). The bibliography is managed using BibTeX, and the citations
are formatted according to a Brookes-style CSL file. The presentation slideshow
was created using Obsidian (with the Advanced Slides plugin), and exported
to PDF using Google Chrome. the poster was created with Figma, and then
resized to the correct size using pdfjam .

The resulting PDFs were combined into the final document using pdftk-java
, and the metadata was corrected using exiftool .

3.3 Version management
The version management system used for Rattlesnake, and its prose documents,
was git . The repository is hosted on GitHub at https://github.com/Starwor
t/py-rattlesnake (private repository) and includes all the code, as well as the
prose documents.

4 Artefacts
The initial plan for the project was to first create the core compiler in Python,
then to translate the compiler into Rust, and finally to create the run-time
libraries for both Python and Rust. However, for various technical reasons, the
Rust version of the compiler ended up being 2 versions of the compiler and a
failed experiment; the pest version, the rustpython_parser version, and
the erg_compiler experiment. A full comparison of the features supported
by each version of the compiler is available at the end of the section.

4.1 Compiler v1: Python and ast

The first attempt at creating the compiler aimed to test the feasibility of the
project by using Python’s built-in ast module to parse the code, rather than
starting in Rust and writing a parser from scratch.

Because ast.NodeVisitor is a class, all the code for the compiler had to be
placed within a single class, which made the code difficult to read and maintain.
Additionally, the lack of a strongly-typed match statement in Python made
writing the translation code more difficult, as I could not be sure that all the
cases were handled (either by compiling correctly, or by raising an error).

These issues meant that, once I had a prototype that was functional enough to
convince me of the feasibility of the general approach, I discontinued development
of this version of the compiler, in favour of a more robust and easily-maintained
compiler in Rust.

At the time of discontinuation, the compiler supported:

• If-statements
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• Assignments (including augmented assignments and annotated assignments,
which were in fact required for a variable to be declared)

• Dictionary literals (depending on a run-time library feature which had not
yet been written)

• Formatted strings (f-strings)
• Expression statements (where the expression was already supported)
• String, integral, floating-point, boolean, and None literals
• List literals (where the items within the list literal are assumed to be of

the same type)
• For-loops (where the iterable is assumed to implement Iterator or

IntoIterator )
• Attribute access (where the access is performed dynamically using a library

feature which had not yet been written)
• Function calls (including macro calls where the Python name for the macro

starts with MACRO_ , and keyword arguments within macro calls only)
• Import and import from statements (where the imported module is assumed

to exist, unless the imported module is rattlesnake , in which case the
import is translated to std )

• Function definitions (where un-annotated arguments are translated to be
of type () )

• Return statements, with or without a value
• Binary operations (other than matmul, @ , pow, ** , and floor division,

// )
• The pass statement (which is translated to the block comment

/* pass */ )
• Storage classes and visibility modifiers (using Rattlesnake type primitives)

Example Python code

from rattlesnake.prelude import *

for n in [3, 5, 7]:
MACRO_println("Multiplication Table:")
for j in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

result: usize = n * j
MACRO_println("{n} * {j} = {result}")

Example Rust code, as output by the compiler given the example Python code

use rattlesnake::prelude::*;

fn main() {
for n in [3, 5, 7] {

println!("Multiplication Table:");
for j in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] {

let result: usize = n * j;
println!("{n} * {j} = {result}");

}
}

}
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Overall, while somewhat successful, this version of the compiler was not sustain-
able for further development.

4.2 Compiler v2: Rust and pest

The second attempt at the compiler used Rust and pest , a PEG (Parsing
Expression Grammar) parser generator.

The grammar used for this compiler is in Appendix B.

This attempt was discontinued because maintaining a grammar for Python is a
considerable amount of work, and the grammar would need to be updated every
time support for a new feature was added to the compiler. Additionally, I had
just discovered that rustpython_parser existed and was usable as a library,
and so I realised that using that would allow me to focus on the challenges of
the actual translation of the code, rather than the parsing of it. Furthermore,
the general architecture of the compiler had some immediate issues:

• Due to the way strings were being concatenated, the output of the compiler
was very badly formatted, and would not have been easy to manipulate to
be better formatted

• Because pest returns a parse tree of rules rather than a typed AST,
all the transformation code needed to be written in a single recursive
function, which causes the same issues as the first version of the compiler’s
single-class architecture

– To be more precise, pest parsers return a single recursive type,
Pairs - an iterator of Pair s containing a Rule and an inner
Pairs . Because of this single-type return, the transformation all

happens within a single match statement, which has to manage all
the different cases of the grammar, even when certain rules can only
be reached in certain contexts

• Because Python uses significant whitespace, the grammar was incredibly
brittle in terms of the input it would accept; while this would be fixed by
pest version 3, which allows the use of two separate whitespace rules,

that version is not yet stable, and so was not used in this project.

At the time of discontinuation, the compiler supported:

• Return statements (despite the fact that functions were not yet supported)
• Assignments, including augmented assignments and annotated assignments

– Annotated assignments were required for a variable to be declared,
although Rattlesnake type primitives were not supported. Addition-
ally, since subscript is not implemented in the grammar, generic types
could not be instantiated.

– Augmented assignments do not support the matmul ( @ ), pow (
** ), or floor division ( // ) operators

• Import and import from statements
– The imported module was assumed to exist; there was no special

support for rattlesnake imports
• Binary arithmetic operations (other than matmul, @ , pow, ** , and

floor division, // )
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• Binary boolean operations
• Unary arithmetic and boolean operations
• The pass statement (which is translated to the block comment

/* pass */ )
• For-loops (where the iterable is assumed to implement Iterator or

IntoIterator )
• If-statements (where the condition is assumed to be a boolean)
• Function calls (basic support, but no grammar-level support for keyword

arguments, and no support for macro invocations)
• List literals (where the items within the list literal are assumed to be of

the same type)
• Number, string, boolean, and None literals

– Decimal literals may be either integers or floats; hex, octal, and binary
literals are only allowed to be integers (at the grammar level). As all
supported numeric literals are also valid Rust literals, they are copied
directly.

– None literals are translated to ()

Example Python code (trailing newline is required by this version of the compiler)

from rattlesnake.prelude import MACRO_println, usize
x: usize = 0
MACRO_println("x = {x}")
x: usize = x+1
MACRO_println("x + 1 = {}",x+1)

Example Rust code, as output by the compiler given the example Python code

fn main() {
use rattlesnake::prelude::{MACRO_println,usize};
let x: usize = 0;
MACRO_println("x = {x}");
let x: usize = x+1;
MACRO_println("x + 1 = {}",x+1);
}

4.3 Compiler v3: Rust and rustpython_parser

The third attempt at the compiler used Rust with rustpython_parser ,
the parser from the RustPython project. This attempt was the most generally
feature-complete of the three, which enabled me to run into the largest road-block
of the project: type information.

4.3.1 Why type checking is a fundamental requirement

Type-checking, at first, does not seem like a fundamental requirement for the
Rattlesnake compiler. After all, the Rust compiler is able to infer types in almost
all cases - so it would seem that there would be no need for Rattlesnake to
handle or apply any type information other than that supplied by annotations
on functions or explicitly annotated variables.
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Unfortunately, this is not the case. Python’s namespacing system is inherently
ambiguous, using the . operator to access items from modules, static items
from classes, and instance items from objects. This means that, in order to
correctly translate the code into Rust, Rattlesnake would need to be able to
know the type of access being performed in order to use the correct operator
in Rust; :: for module or associated item access, and . for instance item
access. This is further complicated by the fact that static access is allowed on
instances, and therefore the compiler would need to transform the access to be
performed on the struct, using path syntax, rather than on the instance, using
attribute syntax.

Additionally, the lack of type inference in the compiler means that every initial
assignment would need a type declaration on it (to indicate to the compiler that
it is a new variable), thus significantly reducing the applicability of the compiler.

4.3.2 The other subtle issue

Another issue looming over the compiler was the growing issue of the architecture.
Because the translation was done directly into strings, rather than into a Rust
AST, it was difficult to further manipulate the output. This would be necessary
in order to perform transformations such as lifting use statements, functions,
and constants to module level. Since those transformations weren’t yet in scope,
I had not considered this issue, but if the project had progressed to that point,
this would have been a significant hurdle to overcome.

At the time of discontinuation, the compiler supported:

• Storage classes and visibility modifiers (using Rattlesnake type primitives)
• Function definitions (where un-annotated arguments are translated to be

of type () )
– Function modifiers are applied by annotating the return type of the

function
• Return statements, with or without a value
• Assignments, including augmented assignments and annotated assignments

– Annotated assignments were required for a variable to be declared,
and could use Rattlesnake primitives to declare storage classes and
visibility modifiers

• For-loops (where the iterable is assumed to implement Iterator or
IntoIterator )

• If-statements (where the condition is converted to a boolean using a
Rattlesnake library function)

• Assert statements (where the condition is assumed to be a boolean, and
the message is assumed to be in macro format)

• Import and import from statements
– Imports from rattlesnake.prelude are ignored; other imports

from rattlesnake are translated to std
– All other imports are assumed to exist

• Boolean operations
• Binary arithmetic operations

– Matmul ( @ ), pow ( ** ), and floor division ( // ) are transformed
into function calls
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∗ The augmented assignment operators use function calls to the
corresponding _in_place versions of those functions

• Lambda expressions (where the argument types are assumed to be inferred)
• Call expressions (where the function is assumed to exist)

– Keyword arguments are not supported outside of macro invocations
• List literals
• Constants

– None literals are translated to PyNone
– Boolean literals are translated to Rust boolean literals
– String constants are translated to Rust string literals

∗ This technically causes a memory leak in the compiler, as the
string is never deallocated, but this should be fine for most code
as the allocated memory will be deallocated when the compiler
exits; in the translated code, the strings are constants

– Bytes literals are translated to Rust arrays of bytes
– Integer literals are translated to Rust integer literals

∗ This also causes a memory leak in the compiler, for the same
reason as for strings. This is also unlikely to be an issue, as
integers are (usually) small and so the leaked strings will also be
small

– Tuples are translated directly into Rust tuples

Example Python code

from rattlesnake.prelude import *

def generate_multiplication_table(n: usize):
MACRO_println("Multiplication Table:")
for j in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

result: usize = n * j
MACRO_println("{n} * {j} = {result}")

for n in [3, 5, 7]:
generate_multiplication_table(n)

Example Rust code, as output by the compiler given the example Python code

use rattlesnake::prelude::*;

fn main() {
fn generate_multiplication_table(n: usize) {

println!("Multiplication Table:");
for j in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] {

let result: usize = n * j;
println!("{n} * {j} = {result}");

}
}
for n in [3, 5, 7] {

generate_multiplication_table(n);
}

}
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4.4 The experiment: Rust, py2erg , and erg_compiler

The fourth attempt at the compiler was an attempt to leverage type information
generated by the Erg compiler. Erg is a programming language which compiles
into Python, and has Rust-like static type checking. The idea for this approach
came from the pylyzer Python linter, which uses its own py2erg crate
to transform Python code into Erg code, which is then analysed by the Erg
compiler, the output of which is reported back to the user.

While this approach seemed promising in theory, in practice there are two major
problems:

• py2erg depends on an outdated version of rustpython_parser , which
will not compile with the latest version of Rust; downgrading Rust to use
py2erg is not an option, as erg_compiler depends on a feature which

was not stabilised until a later version of Rust.
• Even after vendoring a patched copy of py2erg , erg_compiler is

not designed to be used as a type-checking library, and so it cannot output
type information about specific items, unless there is a type error in the
code.

As a result of these problems, the experiment never made it to the point of being
able to parse Python code to a suitable level of detail, and so was discontinued.

4.5 Summary

Table 3: Comparison of supported features

Feature Compiler v1 Compiler v2 Compiler v3
Annotated
assignments

Yes1 Yes1 Yes1

Assert
statements

No No Partial2

Assignments Yes Yes Yes
Attribute
access3

Partial4 Partial Partial

Augmented
assignments

Partial5 Partial5 Yes6

1Annotated assignments are required for a variable to be declared
2Assert statements assume their condition is already a boolean, and their format string

must be format! -compatible
3Attribute access is an inherently ambiguous operation, as the same syntax is used for

namespace lookup, static (class variable) lookup, and instance attribute lookup. Thus, without
type information, it is impossible to determine which operator to use in Rust - the prototypes
all assume instance attribute access (i.e., the . operator)

4The attribute lookup is performed dynamically, using a run-time library interface which
was not yet written

5Matmul ( @ ), pow ( ** ), and floor division ( // ) are not supported
6Matmul ( @ ), pow ( ** ), and floor division ( // ) are transformed into function

calls, provided by a (yet-unwritten) run-time library
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Feature Compiler v1 Compiler v2 Compiler v3
Binary
arithmetic
operators

Partial5 Partial5 Yes6

Binary
logical
operators

Yes Yes Yes

Constant
literals

Yes7 Yes8,9 Yes7,9

Dictionary
literals

Yes10,11 No No

Expression
statements

Yes Yes Yes

For-loops Yes12 Yes12 Yes12

Formatted
strings
(f-strings)

Yes No No

Function
calls

Partial13 Partial14 Partial13

Function
definitions

Partial15 No Partial15

If-
statements

Yes16 Yes17 Yes16

Import and
import from
statements

Yes18 Yes19 Yes18

Lambda
expressions

No No Yes20

List literals Yes11 Yes11 Yes11

pass Yes Yes Yes

7 None literals are translated to PyNone in Rust
8 None literals are translated to () in Rust
9The compiler leaks memory when translating string and integer literals

10Dictionary literals are translated to use a run-time library feature which had not yet been
written

11Items inside a collection literal are assumed to be of the same type, causing a compile
error in the Rust code if they are of incompatible types

12For-loops assume that the translated iterable implements Iterator or IntoIterator
13Keyword arguments are not supported outside of macro invocations; any call to a function

starting with MACRO_ is translated into a macro invocation
14Function calls are supported, but do not support keyword arguments
15Unannotated arguments are translated into () ; visibility modifiers and const can

be applied to the function by applying Rattlesnake type primitives to the function’s return
value

16If-statements use a run-time library feature, bool() , to coerce the condition of an
if-statement to a boolean

17If-statements assume that the condition is a boolean
18Imports from rattlesnake are translated into imports from std ; all other imports

are assumed to exist. Imports from rattlesnake.prelude are excluded entirely
19All imports are assumed to exist
20Lambda expressions assume that the argument types are inferable from context
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Feature Compiler v1 Compiler v2 Compiler v3
Return
statements

Yes Yes Yes

Storage
classes and
visibility
modifiers

Yes No Yes

Unary
operators

No Yes Yes

5 Professional issues
If I were to finish and release Rattlesnake, I would need to consider several
professional issues:

5.1 Legal
The largest issue I would need to consider is licence compatibility. I would need
to ensure that the way Rattlesnake would be released conformed to both its own
licence, as well as the licences of the libraries it used. This would be particularly
important if I were to use my originally-planned licensing scheme, where the
compiler would be dual-licensed under GPL-3.0 (a viral copy-left licence) and
customised business licences. Because many Rust libraries are licensed as one of
MIT, Apache-2.0, or dual-licensed as either, I would need to ensure either that
those libraries’ licences were compatible with my chosen licences, or that the
way I distributed the project was compatible with those libraries’ licences.

It could also be necessary to ensure that the licence of the compiler had a
provision which allows the compiler’s output to be licensed under a different
licence; while this would be a non-issue for the business licence, as it would be a
custom licence for each instance, it could be an issue for the GPL-3.0 licence, as
it is a viral licence and so could cause disruption for other open-source projects
which wished to use the compiler.

5.2 Ethical
Another important issue I would face is that I would have a moral and ethical
responsibility for supporting the compiler and its output - I would need to ensure
that the output code was correct (i.e., that it doesn’t contain any bugs which are
not present in the input code), and that as much of Python as possible would
be supported. Were Rattlesnake to introduce a bug into the output code, it
could have serious consequences for the users of the compiler, and I would be
responsible for causing it.

5.3 Environmental
Were the project to be successful, I believe it would have a positive impact on
the environment. By allowing Python code to be compiled into Rust, it would
allow large Python code-bases to be compiled into more efficient machine code,
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which would run faster and use less memory. This would be a net energy saving,
as fewer computational resources would be required to run the code. This effect
compounds as the frequency or lifespan of the executions increases, as the initial
energy cost of compilation and optimisation is amortised over more time.

6 Future work
To create a useful artefact from the experiences of this project, there are two
primary avenues which could be pursued:

1. Create a type-checking library in Rust, which outputs an AST annotated
with type information. This would allow leveraging the existing parts of
the third version of the compiler (i.e., the Rust implementation under
compiler/ ), and extending it to handle the type information. However,

the third version of the compiler has other, previously mentioned, archi-
tectural issues which may make this option unfavourable, such as the fact
that all translation is done directly into strings, rather than into a Rust
AST which could then be manipulated further before the final output.

2. Create a new compiler completely from scratch, built around an existing
type-checking library. This is probably the most viable option, as utilising
an existing type-checking library would allow for more exotic transforma-
tions to be performed on the code, due to the type information available.
This would also allow a new architecture to be designed, which could avoid
the issues which would be faced if continuing with the third version of the
compiler.

In terms of architectural decisions, a major improvement would be to use an
AST as the intermediate Rust representation, rather than handling strings as
the intermediate format. This would allow for better and less brittle output
formatting, as well as allowing for contextual transformations to be performed
on the code. Additionally, using an AST would allow for more intelligent
transformations, such as lifting use statements, functions, and constants to
module level, or using Result in functions not tagged with @no_except .
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7 Glossary
• AoT (adj., acr.) (also AOT): Ahead-of-time (AoT compiler, AoT compila-

tion)
– A compilation model where all transformations occur prior to running

the code. This is the traditional compilation model, used by languages
such as C or Rust, and is the alternative to JIT.

• AST (n., acr.): Abstract syntax tree
– A representation of source code which is easy to manipulate. It is

often used as an intermediate representation of code in compilers as
it represents the ideas written in the code without the complicating
details such as whitespace.
For example, the following pseudocode:
func foo(bar) do

return bar + 1
end
Could be represented with the following AST (in Lisp syntax):
(function-definition

(name "foo")
(parameters

(name "bar"))
(body

(return-statement
(+ (name "bar")

(constant 1)))))
• Cargo, cargo (n.): The standard Rust package manager and build tool

– Cargo is the standard tool used to generate, build, and test Rust
projects. It is also used to manage dependencies, and is the primary
way of distributing Rust projects.

• CFG (n., acr.): Context-f ree grammar
– A style of grammar which is used to describe the syntax of a language.

CFGs are widely used, and there are many tools available for working
with them.

– See also: PEG.
• Compiler (n.): A program which takes as input code in one form, and

returns as output code in another form.
– Typically, this is translating code from a high-level language into a

lower-level language - such as transforming C or Rust into machine
code - but it can also be translating code between two high-level
languages - such as transforming TypeScript into JavaScript, or (in
this case) transforming Python into Rust.

– See also: transpiler.
• CPython (n.): The official Python interpreter

– https://www.python.org/
– The reference implementation of Python, and the most widely used.

As its name suggests, it is written in C.
– Not to be confused with Cython, a separate project which compiles a

superset of Python into C equivalent to the code that would be run
by CPython.
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• crates.io (n.): The official Rust package registry
– https://crates.io/
– Rust projects are distributed as crates, which can be published to

crates.io. The cargo tool can then be used to install these crates,
either globally (installing their associated binaries) or locally (as a
dependency of the current project).

– See also: docs.rs, PyPI.
• docs.rs (n.): The official Rust documentation host

– https://docs.rs/
– All crates published to crates.io have their documentation built auto-

matically, and hosted on docs.rs. This allows easy access to documen-
tation for Rust projects, without having to install the project locally,
or needing to visit arbitrary third-party websites. Additionally, Rust’s
standard library documentation is also hosted on docs.rs, meaning
that it is the single point of reference for all Rust documentation.

– See also: crates.io.
• Exotic transformation (n.): A transformation which significantly changes

the structure of the code.
– Exotic transformations are transformations or optimisations made

by a compiler which significantly change the structure of the code.
The most extreme examples of exotic transformations are found in
functional languages, where lazy evaluation and immutability can be
used to transform the source code into almost-unrecognisable object
code.

• IR (n., acr.): I ntermediate representation
– A representation of code which is easy to manipulate, but is not tied

to the syntax of the input language. It is often used in compilers which
output machine language as it represents the operations written in
the code in a way which is more amenable to exotic transformations.

– See also: AST.
• JIT (adj., acr.): Just-in-time

– A compilation model where transformations and optimisations occur
during runtime. Popularised by Self and Java, this is the compilation
model used by most modern JavaScript engines, and is the alternative
to AoT.
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• LALR(k) (adj., acr.): Look-ahead (k tokens), left-to-right, r ight-most
derivation (of a grammar or parser)

– A style of grammar which is used to describe the syntax of a language.
LALR(k) grammars are a subset of LR(k) grammars, and are used
by tools such as Yacc to transform a token stream into an AST.

– LALR(k) grammars, while they would first appear to be equivalent to
LR(k) grammars, are actually based on LR(0) grammars - LALR(k)
can also be written as LA(k)LR(0). The advantage LALR(k) parsers
have over LR(k) parsers is that they are more memory-efficient for
languages that are LALR(k).

– Look-ahead: The number of future tokens the parser may inspect
before choosing a production to apply to the current token. This is
necessary to disambiguate between different productions which may
be valid at a given point in the parse.

– Left-to-right: The parser starts at the beginning of the stream, and
travels only towards the end.

– Right-most derivation: The parser/generator always attempts to
resolve the right-most non-terminal first.

– See also: CFG, LL(k), LR(k).
• Linter (n.): A program which analyses source code for potential issues

– Linters are typically used to enforce a coding style, or to catch
common errors before they become a problem. They are often used in
conjunction with the compiler, typically integrated into the developer’s
editor to provide real-time feedback, but can also be run as a separate
step in the build process.

– Linters take their name from the idea of finding small presentational
issues in the code, metaphorical pieces of lint which need to be
removed, but have since evolved to also act as real-time verifiers.

• LL(k) (adj., acr.): Left-to-right, left-most derivation, with k tokens of
lookahead (of a grammar or parser)

– A style of grammar or parser which is used to describe the syntax of
a language. LL(k) grammars are a subset of CFGs.

– According to Waite and Goos (1984), LL(k) grammars were introduced
by Stearns and Lewis (1969).

– Left-to-right: The parser starts at the beginning of the stream, and
travels only towards the end.

– Left-most derivation: The parser/generator always attempts to resolve
the left-most non-terminal first.

– Look-ahead: The number of future tokens the parser may inspect
before choosing a production to apply to the current token. This is
necessary to disambiguate between different productions which may
be valid at a given point in the parse.

– See also: CFG, LALR(k), LR(k).
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• LR(k) (adj., acr.): Left-to-right, r ight-most derivation, with k tokens of
lookahead (of a grammar or parser)

– A style of grammar or parser which is used to describe the syntax of
a language. LR(k) grammars are a subset of CFGs.

– Left-to-right: The parser starts at the beginning of the stream, and
travels only towards the end.

– Right-most derivation: The parser/generator always attempts to
resolve the right-most non-terminal first.

– Look-ahead: The number of future tokens the parser may inspect
before choosing a production to apply to the current token. This is
necessary to disambiguate between different productions which may
be valid at a given point in the parse.

– See also: CFG, LALR(k), LL(k).
• Monkey-patch (n.): The result of monkey-patching
• Monkey-patch (v.): To modify a global namespace, typically to create

additional global functions or data
– This is generally considered bad practice in most languages, as doing

so can lead to conflicts between different libraries which both monkey-
patch the same namespace.

– It is often used in languages like JavaScript, where poly-fills use
monkey-patching to (conditionally) update the global namespace to
add support for features from newer specifications into older run-times.

• MSRV (n., acr.): Minimum Supported Rust Version
– The oldest version of the Rust compiler supported by a project

• PEG (n., acr.): Parsing Expression Grammar
– A style of grammar which is used to describe the syntax of a language.

Less common than CFGs, but more powerful and easier to write.
– See also: CFG.

• Poly-fill (n.): Code which poly-fills a specific feature
• Poly-fill (v.): To provide an implementation of a feature which is not

natively supported by (this version of) the platform
– The most common occurrence of this is in web development, where

poly-fills can be used to provide support for newer features and APIs
when running in older browsers.

– Poly-fills refer specifically to monkey-patching the namespace being
poly-filled, rather than providing a separate namespace for the feature,
which will be implemented either by delegating to the native imple-
mentation (if available) or by providing a custom implementation (if
not) - this alternative method is known as a pony-fill.

• PyPI (n., abbr.): Python Package Index
– https://pypi.org/
– The official Python package registry. It is used by the pip tool,

and all related tools, to install Python packages.
– See also: crates.io.

• RAD (n., acr.): Rapid Application Development
– A software development methodology which focuses on rapid proto-

typing and iteration.
• REPL (n., acr.): Read-eval-print loop

– A program which prompts the user to enter code, which is then
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evaluated and (if applicable) the result is printed by the run-time.
This is often used for rapid ephemeral prototyping, as it allows the
programmer to see the result of their code immediately.

• Transpiler (n.): A term to refer to a compiler which translates specifically
from a high-level language to another high-level language

– See also: compiler.
• Vendor, vendoring (v.): Including a copy of a library in the source code of

a project
– This is often done to ensure that the project will always be able to

build, even if the library is no longer available, or if the library is
updated in a way which breaks compatibility with the project.

– It is also necessary if the library needs to be patched, or if the
library cannot be installed through the standard package manager
(for example, when building the package manager itself).
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Appendix A: A grammar for parsing dice expres-
sions
// SOI and EOI refer to Start and End Of Input, respectively.
// They are necessary to enforce that `pest` recognises the

entire↪→

// string, rather than simply stopping on locating a syntax
error.↪→

// A brief overview of `pest`'s syntax:
// - Rules are defined with the syntax `RuleName = { ... }`
// - Rules can be concatenated with the `~` operator
// - Rules can be repeated with the `*` (zero-or-more) or `+`

(one-or-more)↪→

// operators
// - Rules can be made optional with the `?` (one-or-zero)

operator↪→

// - Subexpressions can be grouped with brackets
// - Different rules can be matched with the `|` (ordered choice)

operator↪→

// - Literal strings can be matched by placing them in double
quotes↪→

Expression = { SOI ~ Expr ~ EOI }
Expr = { MinMaxTerm ~ ((Gt | Lt | Ge | Le | Eq) ~

MinMaxTerm)* }↪→

CompOp = { ">" | "<" | ">=" | "<=" | "=" }
MinMaxTerm = { AddTerm ~ (MinMaxOp ~ AddTerm)* }
MinMaxOp = { "v" | "ˆ" }
AddTerm = { AddOp? ~ MulTerm ~ (AddOp ~ MulTerm)* }
AddOp = { "+" | "-" }
MulTerm = { Repeat ~ (MulOp ~ Repeat)* }
// `//` and `/v` are both equivalently floor division;
// `/` is true division and `/ˆ` is ceiling division
MulOp = { "*" | "/" | "//" | "/v" | "/ˆ" | "%" }
Repeat = { Atom ~ (Keep? ~ Atom)* }
Keep = { "k" ~ LowHigh ~ Atom }
// parse low first, because high will always match due to the ?

operator↪→

LowHigh = { "l" | "h"? }
// _ makes a rule 'silent'; its inner rules are parsed as normal,

but↪→

// the rule itself does not appear in the parse result
Atom = _{ Number | "(" ~ Expr ~ ")" | DieRoll |

FunctionCall }↪→

FunctionCall = { FunctionName ~ "(" ~ Expr ~ ("," ~ Expr)* ~
","? ~ ")" }↪→

FunctionName = {
"min"

| "max"
| "avg"
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| "equal"
| "floor"
| "ceil"
| "round"
| "trunc"
| "sum"

}
// @ makes a rule 'atomic'; its inner rules are parsed without

handling↪→

// WHITESPACE and all parsed content is saved only as the string
value↪→

// for this rule. ASCII_DIGIT is a built-in rule which matches
any of the↪→

// characters 0-9
Number = @{ ASCII_DIGIT+ ~ ("." ~ ASCII_DIGIT+)? }
// ˆ before a string makes that string match case-insensitively
// in other words, d6 and D6 are equivalent
DieRoll = { ˆ"d" ~ Atom }

// a magic rule which is automatically parsed and ignored
wherever a ~↪→

// is used within a (non-atomic) rule
WHITESPACE = _{ " " }
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Appendix B: Grammar used in the second version
of the compiler
Program = _{

SOI ~ BlankLine* ~ (PEEK_ALL ~ JoinedStatements ~
BlankLine*)* ~ EOI↪→

}
Statement = _{

Return
| Assign
| AugAssign
| AnnAssign
| For
| If
| Import
| ImportFrom
| StatementExpr
| Pass

}
StatementExpr = { Expr }
Return = { "return" ~ (" "+ ~ Expr)? }
Assign = { Expr ~ " "* ~ "=" ~ " "* ~ Expr }
AugAssign = { Expr ~ " "* ~ AugOp ~ " "* ~ Expr }
AnnAssign = {

Expr ~ " "* ~ ":" ~ " "* ~ Expr ~ (" "* ~ "=" ~ " "* ~ Expr)?
}
Import = { "import" ~ " "+ ~ (Path ~ ("," ~ Path)*) }
ImportFrom = {

"from" ~ " "+ ~ Path ~ " "+ ~ "import" ~ " "+ ~ Name ~ " "* ~
(↪→

"," ~ " "* ~ Name
)*

}
Pass = { "pass" }
For = {

"for" ~ " "+ ~ Expr ~ " "+ ~ "in" ~ " "+ ~ Expr ~ " "* ~ ":"
~ " "* ~ (↪→

Statement | NEWLINE ~ Block
)

}
If = {

"if" ~ " "+ ~ Expr ~ " "* ~ ":" ~ " "* ~ (
Statement | NEWLINE ~ Block

) ~ Elif* ~ Else?
}
Elif = {

"elif" ~ " "+ ~ Expr ~ " "* ~ ":" ~ " "* ~ (Statement |
NEWLINE ~ Block)↪→

}
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Else = { "else" ~ " "* ~ ":" ~ " "* ~ (Statement |
NEWLINE ~ Block) }↪→

Path = { Name ~ ("." ~ Name)* }

Atom = _{ BracketExpr | UnaryExpr | Constant | Name | List
}↪→

BracketExpr = { "(" ~ Expr ~ ")" }
UnaryExpr = _{ UnaryOp ~ Atom }
CallExpr = _{ Atom ~ Call* }
Call = { ("(" ~ (Expr ~ ("," ~ Expr)*)? ~ ","? ~ ")") }
BinOpExpr = _{ CallExpr ~ (BinOp ~ CallExpr)* }
Expr = { BinOpExpr ~ (BoolOp ~ BinOpExpr)* }

List = { "[" ~ (Expr ~ ("," ~ Expr)*)? ~ ","? ~ "]" }
Constant = _{ Number | String | True | False | None }
True = { "True" }
False = { "False" }
None = { "None" }
Number = _{ DECIMAL | HEX | OCTAL | BINARY }
DECIMAL = @{

DECIMAL_NUMBER ~ ("_"? ~ DECIMAL_NUMBER)* ~ (
"." ~ DECIMAL_NUMBER ~ ("_"? ~ DECIMAL_NUMBER)*

)? ~ (
("e" | "E") ~ ("+" | "-")? ~ DECIMAL_NUMBER ~ ("_"? ~

DECIMAL_NUMBER)*↪→

)?
}
HEX = @{ "0x" ~ HEX_NUMBER ~ ("_"? ~ HEX_NUMBER)* }
HEX_NUMBER = _{ DECIMAL_NUMBER | 'a'..'f' | 'A'..'F' }
OCTAL = @{ "0o" ~ ASCII_OCT_DIGIT ~ ("_"? ~

ASCII_OCT_DIGIT)* }↪→

BINARY = @{ "0b" ~ ("0" | "1") ~ ("_"? ~ ("0" | "1"))* }
String = {

PUSH("'") ~ StringChar* ~ POP
| PUSH("\"") ~ StringChar* ~ POP
| PUSH("'''") ~ StringChar* ~ POP
| PUSH("\"\"\"") ~ StringChar* ~ POP

}
StringChar = { !"\\" ~ !PEEK ~ ANY | StringEscape }
StringEscape = { "\\" ~ ("\\" | "r" | "n" | "t" | "b" | "'" |

"\"" | "0") }↪→

Block = _{
NEWLINE* ~ PEEK_ALL ~ PUSH(" "+) ~ JoinedStatements ~ (

BlankLine* ~ PEEK_ALL ~ JoinedStatements ~ (";" |
NEWLINE) ~ NEWLINE*↪→

)* ~ POP
}
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BinOp = { "+" | "-" | "*" | "/" | "%" | "&" | "|" | "ˆ" | ">>"
| "<<" }↪→

BoolOp = { "and" | "or" }
UnaryOp = { "+" | "-" | "~" | "not" }
AugOp = {

"+=" | "-=" | "*=" | "/=" | "%=" | "&=" | "|=" | "ˆ=" | ">>="
| "<<="↪→

}
Name = { (ASCII_ALPHA | "_") ~ (ASCII_ALPHANUMERIC | "_")* }

BlankLine = _{ " "* ~ NEWLINE }
JoinedStatements = _{ (Statement ~ " "* ~ ";" ~ " "*)* ~

Statement ~ NEWLINE }↪→
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Appendix C: Software and other projects men-
tioned within this report
Projects are listed in alphabetical order by name.

Project (link) Licence Repository
Advanced Slides for Obsidian MIT MSzturc/obsidian-

advanced-slides
Advent of Code (custom) (none)
ast PSF Licence v2 python/cpython/Lib/ast.py
cargo MIT/Apache-2.0 rust-lang/cargo
clap MIT/Apache-2.0 clap-rs/clap

CPython (Python) PSF Licence v2 python/cpython
Cython Apache-2.0 cython/cython
erg_compiler MIT/Apache-2.0 erg-

lang/erg/crates/erg_compiler
exiftool GPL-1.0 https://sourceforge.ne

t/p/exiftool/code/ci/m
aster/tree/

Figma (unknown) (none)
git GPL-2.0 https://git.kernel.org/p

ub/scm/git/git.git/
Google Chrome (unknown) (none)
Obsidian (custom) (none)
pandoc GPL-2.0-or-later,

optionally
BSD-3-Clause
(templates only)

jgm/pandoc

pdfjam GPL-2.0 rrthomas/pdfjam
pdflatex Unclear - see

LICENSE.TL
svn://tug.org/texlive/
trunk/Build/source
(mirror)

pdftk-java (no link) GPL-2.0-or-later https://gitlab.com/pdf
tk-java/pdftk

pest MIT/Apache-2.0 pest-parser/pest
py2erg MIT mtshiba/pylyzer/crates/py2erg
pylyzer MIT mtshiba/pylyzer

PyPy MIT pypy/pypy
Rust MIT/Apache-2.0 rust-lang/rust
rustpython_parser MIT RustPython/Parser

TypeScript Apache-2.0 microsoft/TypeScript
V (language) MIT vlang/v
Vala LGPL-2.1 https://gitlab.gnome.o

rg/GNOME/vala
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https://mszturc.github.io/obsidian-advanced-slides/
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