
COMP6013 Project Proposal - Rattlesnake

Contents
1 Introduction 2

1.1 Background . 2
1.2 Aim . 2
1.3 Objectives . 3
1.4 Product Overview . 3

1.4.1 Scope . 3
1.4.2 Audience . 3

2 Background Review 4
2.1 Prior Art . 4

2.1.1 Pyrex . 4
2.1.2 Cython/Cythonize . 4
2.1.3 RPython . 5

2.2 Related Work . 5
2.2.1 PyO3 . 5
2.2.2 RustPython . 5
2.2.3 PyPy . 5

2.3 Literature . 6
2.3.1 Cython: The Best of Both Worlds 6
2.3.2 Transpiling Python to Rust for Optimized Performance . 6
2.3.3 Rust: The Programming Language for Safety and Perfor-

mance . 7

3 Methodology 7
3.1 Approach . 7

3.1.1 Software Development Model 7
3.1.2 Requirement Gathering Method 7
3.1.3 Testing and Evaluation Process 8

3.2 Technology . 8
3.3 Version Management Plan . 8

4 Project Management 8
4.1 Activities . 8

4.1.1 Run-time Library (Rust) 8

1

4.1.2 Run-time Library (Python) 9
4.1.3 Compiler . 9

4.2 Schedule . 10
4.3 Data Management Plan . 10
4.4 Deliverables . 10

5 Glossary 10

6 Bibliography 12

1 Introduction
1.1 Background
This project, Rattlesnake, will be a compiler, and its associated run-time libraries,
which translate Python source code into Rust source code.

The initial target will be to translate an arbitrary subset of Python 3.10 into
Nightly Rust, but an eventual goal is complete compatibility with up-to-date
Python versions and stable Rust with as low an MSRV (Minimum Supported
Rust Version, a term used by Rust projects to indicate support) as possible.

The purpose of Rattlesnake is to allow Python code to be compiled into a
native executable, which can be run faster, more memory-efficiently, and without
requiring a Python interpreter. It would also allow rapid development of Rust
libraries, by writing a rough skeleton in Python, translating it to Rust, and then
optimising the generated Rust code. Lastly, it could also allow Python projects
to use Rust libraries, by leaving the Rust calls in place when translating the
Python source.

An eventual goal of Rattlesnake is to have full coverage of Python 3, and thus
to be able to translate any Python 3 code into Rust. However, this is a very
ambitious goal, and so for the time being, the aim is to support a subset which
removes some particularly tricky-to-translate language features (some reflection,
decorators, extension modules, async, threading, etc.). The early versions of
Rattlesnake will be written in Python, using the ast built-in module to generate
an AST (Abstract Syntax Tree, an easy-to-manipulate representation of code),
and then compiled into Rust source code; later versions of Rattlesnake will be
built in Rust, using the compiled Python script as a base, and will likely replace
ast with pest1.

1.2 Aim
The aim of Rattlesnake is to translate Python 3 code into Rust code, as efficiently
as possible and with as little loss of functionality as possible. The generated

1dragostis et al. (2023) ‘pest. The Elegant Parser’. Available at: https://pest.rs/ (Accessed:
18 October 2023)

2

https://pest.rs/

code should also look as readable as possible.

1.3 Objectives
1. Create the run-time Rattlesnake library for Rust, which will provide various

standard Python types and functions.
2. Create the run-time Rattlesnake library for Python, which will provide

access to various standard Rust types, functions, and macros (and will act
as a poly-fill for interpreted Python code).

3. Create the Rattlesnake compiler in Python, using the ast module to parse
source code.

4. Compile the Python version of Rattlesnake with Rattlesnake, then optimise
the output and maintain the Rust version.

• Compiling Rattlesnake to Rust allows distributing it with Cargo;
cargo install rattlesnake will install the compiler binary.

• Optimising and maintaining the Rust version allows it to be faster
and more memory-efficient than the plainly-compiled version, at the
cost of having to maintain a separate grammar file (if using pest) or
recompiling the ast module (if using Rattlesnake-compiled ast) on
each major version.

– However, maintaining the Rust version separately may allow
lowering the MSRV/reducing dependence on Nightly features.

5. Create the associated documentation for the Rattlesnake compiler and
run-time libraries.

6. Create these documents as part of the dissertation project.

1.4 Product Overview
1.4.1 Scope

The product will take as input Python 3 source code. It will translate that source
code into Rust source code, or raise an error if the input contains unsupported
features. The output Rust code will be able to be compiled into a native
executable, which can be run without a Python interpreter. The output code
will depend on the library rattlesnake, which will be a Rust library which
provides various standard Python types and functions.

There will also be a Python library rattlesnake, which will provide various
standard Rust types, functions, and macros, and can be used by Python code in
order to produce more optimised or efficient Rust code.

1.4.2 Audience

Rattlesnake is intended to be a tool for Python developers who want the speed
and memory-efficiency benefits of Rust. It also serves as a rapid prototyping
tool for Rust projects, and a way to simplify the distribution of Python projects
as a single executable.

3

2 Background Review
2.1 Prior Art
This section focuses on other Python compilers, and how they differ from
Rattlesnake.

2.1.1 Pyrex

Pyrex2 is a Python-like language which compiles to C as a Python extension
module. It was developed by Greg Ewing, and was the predecessor to Cython.
It is no longer maintained, and has been superseded by Cython.

It only supported extension module targets, and as a result always depends on
the CPython interpreter, rather than producing stand-alone executables.

2.1.2 Cython/Cythonize

Cython3 and Cythonize, first released in 2007, are tools which translate Python
or Cython code down to C, which can then be compiled either into a native
executable or into a Python extension module. Cython is a modified dialect of
Python, which changes some syntax to allow for easier translation for the tool.

While Cython and Cythonize share the same high-level goal as Rattlesnake - to
make Python code faster - Cython produces code which is 100% equivalent to
how CPython would run that code. This has a couple of downsides:

• Cython-generated code depends on Python’s C API, which requires the
Python headers to be installed, and in some cases requires a Python
interpreter to be present at runtime.

• Cython-generated code contains lots of CPython calls, which can be difficult
to read; this is made worse by the fact that C has no operator overloading,
and so most operations require a function call.

• Because Cython produces 100% equivalent code, it is in many cases not
possible to optimise the generated code for speed without changing the
source Python code.

Rattlesnake, on the other hand, will produce Rust code, which is not guaranteed
to be 100% equivalent to how CPython would run the code (although its
behaviour will be matched on a best-effort basis). This allows for more aggressive
optimisations, and means that the generated code will never require a Python
interpreter to be present at runtime.

For more information on Cython, see:
2Ewing, G. (2010) ‘Pyrex - a Language for Writing Python Extension Modules’, Pyrex.

Available at: https://www.csse.canterbury.ac.nz/greg.ewing/python/Pyrex/ (Accessed: 11
October 2023).

3Behnel S. et al. (2023) ‘Cython: C-Extensions for Python’. Available at: https://cython.o
rg/ (Accessed: 11 October 2023).

4

https://www.csse.canterbury.ac.nz/greg.ewing/python/Pyrex/
https://cython.org/
https://cython.org/

• https://cython.readthedocs.io/en/latest/
• https://pypi.org/project/Cython/
• https://github.com/cython/cython

2.1.3 RPython

RPython4 is an AOT-compiled (Ahead Of Time-compiled; the traditional compi-
lation model where all transformations occur prior to running the code) dialect
of Python. It was developed for use in PyPy5, and is used to write the PyPy
interpreter itself. It has no formal specification (its official definition6 is ‘RPython
is everything that our translation toolchain can accept’!).

RPython has a number of compile targets, split into the two broad categories
of ‘C-like memory model’ and ‘object-oriented memory model’. This allows the
compiler to make code tailored for its target, leaning more heavily on allocation
and caching for C-like targets, and translating somewhat more directly for OO
targets.

2.2 Related Work
2.2.1 PyO3

PyO37 is a project which provides Rust bindings for CPython. This is typically
used for creating extension modules, but can also be used to run Python code
from Rust at run-time.

PyO3’s goals are fundamentally different to Rattlesnake’s, but as it is in the
same area, it is worth mentioning.

2.2.2 RustPython

RustPython8 is a Python interpreter written in Rust. It is not a compiler, but
rather an alternative to CPython; its major selling point is the ability to embed
a Python script into a web page, and run it in the browser with WebAssembly. It
can also be used to embed Python scripts into Rust programs, similar to PyO3.

2.2.3 PyPy

Not to be confused with PyPI, the Python Package Index.
4The PyPy Project (2022) ‘RPython Language’. Available at: https://rpython.readthedocs.

io/en/latest/rpython.html (Accessed: 11 October 2023)
5The PyPy Team (2023) ‘PyPy’. Available at: https://www.pypy.org/ (Accessed: 11

October 2023)
6The PyPy Project (2022) ‘RPython Language’. Available at: https://rpython.readthedocs.

io/en/latest/rpython.html (Accessed: 11 October 2023)
7PyO3 Developers (2023) PyO3: Rust bindings for the Python interpreter. Available at:

https://github.com/PyO3/pyo3 (Accessed: 18/10/2023)
8windelbouwman et al. (2023) ‘RustPython’. Available at: https://rustpython.github.io/

(Accessed: 18 October 2023)

5

https://cython.readthedocs.io/en/latest/
https://pypi.org/project/Cython/
https://github.com/cython/cython
https://rpython.readthedocs.io/en/latest/rpython.html
https://rpython.readthedocs.io/en/latest/rpython.html
https://www.pypy.org/
https://rpython.readthedocs.io/en/latest/rpython.html
https://rpython.readthedocs.io/en/latest/rpython.html
https://github.com/PyO3/pyo3
https://rustpython.github.io/

PyPy9 is a JIT-compiling (Just In Time-compiling; a hybrid compiled/interpreted
approach where ‘hot’ code which is run many times gets compiled/optimised
more heavily) Python interpreter, which is written in RPython, a restricted
subset of Python which was developed alongside PyPy. PyPy’s primary goal is
to be a drop-in alternative to CPython, and in most cases is significantly faster
at running pure-Python code.

2.3 Literature
2.3.1 Cython: The Best of Both Worlds10

This paper describes the advantages of Python for scientific computing, and
presents its problems with performance when performing low-level loops as one
of the justifications for Cython. It then describes Cython, first noting that it is
a fork of Pyrex, and then describing its features.

Next, it goes on to describe a few common optimisations that Cython will
perform by default, and then describes ways to further optimise Cython code
using its special syntax.

2.3.2 Transpiling Python to Rust for Optimized Performance11

This paper describes the attempt of these researchers to create a Python-to-Rust
semi-automatic transpiler, based on the (now-archived) open-source project Pyrs,
which was, according to its README, ‘not aimed at producing ready-to-compile
code’.

The paper notes the similarities between Python idioms and Rust idioms that
Rattlesnake aims to use, and notes an across-the-board speed-up and memory
reduction of up to 12x and up to 4x, respectively, when comparing their compiled
Rust code to the original Python code.

The researchers’ method required lots of programmer input during the translation
step; according to the paper, ‘[after] syntax conversion, the program is unlikely
to immediately compile using the Rust compiler and must be manually edited’.

9The PyPy Team (2023) ‘PyPy’. Available at: https://www.pypy.org/ (Accessed: 11
October 2023)

10Behnel, S. et al. (2011) ‘Cython: The Best of Both Worlds’, Computing in Science &
Engineering, 13(2), pp. 31-39. Available at: https://doi.org/10.1109/MCSE.2010.118.

11Lunnikivi, H., Jylkkä, K. and Hämäläinen, T. (2020) ‘Transpiling Python to Rust for
Optimized Performance’, in A. Orailoglu, M. Jung, and M. Reichenbach (eds) Embedded
Computer Systems: Architectures, Modeling, and Simulation. Cham: Springer International
Publishing, pp. 127-138.

6

https://github.com/konchunas/pyrs
https://www.pypy.org/
https://doi.org/10.1109/MCSE.2010.118

2.3.3 Rust: The Programming Language for Safety and Perfor-
mance12

This paper describes, generally, the Rust language itself, its history, and its advan-
tages compared to other languages. Among other things, the paper notes Rust’s
memory safety, commitment to zero-overhead abstractions, and its ecosystem.

It goes on to compare Rust to C, C++, Go, Java, and Python in 3 benchmarks,
and notes that Rust outperforms all of them except C in all three benchmarks
for memory usage, and for speed outperforms all other languages in two of the
three benchmarks, and is beaten only by C and C++ (and only by a margin of
0.04s) in the third.

The paper continues by discussing common memory safety issues, why they are
common in C and C++ projects, and how Rust protects against them.

Overall, the paper gives a good description of Rust, and explains in details the
reasons why Rust is a sensible choice for a low-level language - and hence, why
it is a good choice as the target language for Rattlesnake.

3 Methodology
3.1 Approach
3.1.1 Software Development Model

The software development model I have chosen for Rattlesnake is the RAD
(Rapid Application Development) model of development.

RAD is a methodology which focuses on rapid prototyping and iteration. It is
a form of agile development, and is particularly suited to projects where the
requirements are not fully known at the start of the project, or may change as
the project progresses.

I have chosen RAD primarily because it reduces the overhead of other method-
ologies, such as the mountain of documentation associated with scrum, or the
strict requirements of waterfall. It also allows for a more flexible timescale, as
each iteration can be as long or as short as necessary.

As I am the primary stakeholder for the project at this point, the extra stakeholder
involvement of RAD is not an issue.

3.1.2 Requirement Gathering Method

The requirement gathering method I have chosen for Rattlesnake is the proto-
typing method. This is a method which focuses primarily on creating candidate

12Bugden, W. and Alahmar, A. (2022) ‘Rust: The Programming Language for Safety and
Performance’. Available at: https://arxiv.org/abs/2206.05503.

7

https://arxiv.org/abs/2206.05503

improvements to the solution, and then evaluating them with the stakeholders
(in this case, me) to see what works well, and what needs improving or replacing.

This method of requirement gathering can be thought of similarly to the gradient
descent model used to train machine learning algorithms; trying out potential
changes, and deciding the direction to move based on the feedback generated
from those changes.

3.1.3 Testing and Evaluation Process

For the testing process, I intend to run the compiler over CPython’s benchmarking
suite; the test results will be based on how much of the suite compiles successfully
(both with Rattlesnake, and then with Cargo).

Code which does not compile with Rattlesnake will be penalised less harshly
than compiled code which cannot be compiled with Cargo; the former implies
unsupported features whereas the latter implies a compiler bug.

For the evaluation process, the compiled artefacts will then be benchmarked and
compared to the CPython and PyPy benchmark results.

3.2 Technology
The run-time libraries for Rattlesnake will be implemented in Python and Rust,
by necessity. The first version of the compiler will be implemented in Python,
and eventually it will be compiled by itself into Rust, then maintained as a Rust
project. While the compiler is written in Python, it will use the ast module to
parse source code; once it has been compiled into Rust, it is likely that I will
swap out the ast module for pest, rather than simply maintaining the compiled
version of ast.

3.3 Version Management Plan
Rattlesnake, and all associated documentation, will be versioned using Git. The
repository will be hosted on GitHub, and will be publicly available once my
dissertation is finished.

4 Project Management
4.1 Activities
4.1.1 Run-time Library (Rust)

Contributes to objective #1, #5.

The run-time library for Rust needs to contain basic definitions for Python
objects and functions. It will also need to contain a special type, the boxed
PyObject, which will be used for Python objects of unknown type.

8

4.1.2 Run-time Library (Python)

Contributes to objective #2, #5.

• Basic type annotations to allow optimisations of numeric types
• Compiler intrinsics in the form of marker annotations (e.g. @no_except

to indicate that a function cannot raise an exception, or @derive() to
indicate that a class wants to derive standard Rust traits such as Debug,
Clone, or Copy)

– These will be poly-filled at run-time when using a standard Python
implementation

• Support for built-in macros
– println!()
– panic!()
– unreachable!()
– These will be implemented in Python as functions with the magic

name MACRO_*, and any call to a function with a name starting with
MACRO_ will be transformed into a macro call in the output Rust
code. They will also be poly-filled at run-time when using a standard
Python implementation.

• Eventually, fill in types from the Rust standard library
– Vec<T>
– HashMap<K, V> and BTreeMap<K, V>
– HashSet<T> and BTreeSet<T>
– Instant and Duration
– etc.
– These types will be poly-filled at run-time when using a standard

Python implementation.

4.1.3 Compiler

Contributes to objective #3, #4, #5.

• Parse and transform simple Python code into Rust code
• Add support for imported modules, and walk/tree-shake the dependency

tree when compiling
• Add support for type annotations

– Add support for generics
• Add support for compiler intrinsics via marker annotations in the Python

library
• (Incrementally) add support for more language constructs and features

9

4.2 Schedule

4.3 Data Management Plan
The Rattlesnake repository will be structured as follows:

• compiler: The Rattlesnake compiler code, and the Rust run-time library.
– The reason that these are both bundled into the same folder is so

that once Rattlesnake has been published to crates.io
• pylib: The Python run-time library.
• prose: All prose documents, including this one, associated with the disser-

tation project, as Markdown documents.
• meeting-notes: Notes from meetings with my project supervisor, as

Markdown documents.

4.4 Deliverables
The deliverables associated with the Rattlesnake project are as follows:

• The compiler itself
• The Rust run-time library, used by the compiler’s output (and by the

compiler itself, due to its initial Rust versions being compiled from Python
by itself)

• The Python run-time library, used by the compiler’s input to provide access
to (poly-filled) native types and macros, as well as markers used by the
compiler to optimise the output

5 Glossary
• AOT (adj.): Ahead-of-Time

– A compilation model where all transformations occur prior to running
the code. This is the traditional compilation model, used by languages
such as C or Rust, and is the alternative to JIT.

• AST (n., acr.): Abstract Syntax Tree
– A representation of source code which is easy to manipulate. It is

often used as an intermediate representation of code in compilers as
it represents the ideas written in the code without the complicating
details such as whitespace.

10

https://mermaid.live/edit#pako:eNq9U01r4zAQ_SuDzjbY3rRsfOyanjZQmsJS8GVqjxNtLMlI45ZQ-t93XNkkDe0eKwwa5DfvzeeralxLqlQ7tMy1BTmsuSe4R5YrWDwQbAdqxh5ZPxNU9Ey9GwxZhgdtqNeWol-LTLfOG2SARznpZpNW1czpWjxu0B_Ig-u6-BioYe0s3HkXZg4x_8rrdA8uYA_lMFsJFFnxI83WaXE123mWFln0-0N0gBWE8cnoECbS0mgJn52lc3SyyFCQBPBdfvA0oI92OWFXaZaneVQRu5DvE7fKY8eAtoWt6_gF_VQb4y6FZ4JZ-FZbSepMMUAZQZPo4rBK8_U5_uu0ZnByUdAj7-X6rZ88-mP8d963cilIfp1AnmVthDwIsba7JaJT3pe-S05wCv1ThlMeS2T3Y-D_xCUVlQE5tXz9jaH9cmaQ2vovy5V_6NAl7zQIN2SbvZEpD3GQotPPj21ViTIkW6JbWbvXiaRWvCdDtSrFbMW9VrV9ExyO7LZH26iS_UiJGodpxyqNO49GlR32QV6p1ez8Ju7x-zq__QO8KycL
https://crates.io/

For example, the following Python code:
def foo(bar):

return bar + 1
Could be represented with the following AST (in Lisp syntax):
(function-definition

(name "foo")
(parameters

(name "bar"))
(body

(return-statement
(+ (name "bar")

(constant 1)))))
• Cargo, cargo (n.): The standard Rust package manager and build tool

– Cargo is the standard tool used to generate, build, and test Rust
projects. It is also used to manage dependencies, and is the primary
way of distributing Rust projects.

• Compiler (n.): A program which takes as input code in one form, and
returns as output code in another form.

– Typically, this is translating code from a high-level language into a
lower-level language - such as transforming C or Rust into machine
code - but it can also be translating code between two high-level
languages - such as transforming TypeScript into JavaScript, or (in
this case) transforming Python into Rust.

– See also: transpiler.
• CPython (n.): The official Python interpreter, written in C
• crates.io (n.): The official Rust package registry

– https://crates.io/
– Rust projects are distributed as crates, which can published to

crates.io. The cargo tool can then be used to install these crates,
either globally (installing their associated binaries) or locally (as a
dependency of the current project).

– See also: docs.rs, PyPI.
• docs.rs (n.): The official Rust documentation host

– https://docs.rs/
– All crates published to crates.io have their documentation built auto-

matically, and hosted on docs.rs. This allows easy access to documen-
tation for Rust projects, without having to install the project locally,
or needing to visit arbitrary third-party websites. Additionally, Rust’s
standard library documentation is also hosted on docs.rs, meaning
that it is the single point of reference for all Rust documentation.

– See also: crates.io.
• JIT (adj.): Just-in-Time

– A compilation model where transformations and optimisations occur
during the running of the code. Popularised by Self and Java, this is
the compilation model used by most modern JavaScript engines, and
is the alternative to AOT.

11

https://crates.io/
https://docs.rs/

• Monkey-patch (n.): The result of monkey-patching
• Monkey-patch (v.): To modify a global namespace, typically to create

additional global functions or data
– This is generally considered bad practice in most languages, as doing

so can lead to conflicts between different libraries which both monkey-
patch the same namespace.

– It is often used in languages like JavaScript, where poly-fills use
monkey-patching to (conditionally) update the global namespace to
add support for newer features.

• MSRV (n., acr.): Minimum Supported Rust Version
– The oldest version of the Rust compiler supported by a project

• Poly-fill (n.): Code which poly-fills a specific feature
• Poly-fill (v.): To provide an implementation of a feature which is not

natively supported by (this version of) the platform
– The most common occurrence of this is in web development, where

poly-fills can be used to provide support for newer features and APIs
when running in older browsers.

– Poly-fills refer specifically to monkey-patching the namespace being
poly-filled, rather than providing a separate namespace for the feature,
which will be implemented either by delegating to the native imple-
mentation (if available) or by providing a custom implementation (if
not) - this alternative method is known as a pony-fill.

• PyPI (n., abbr.): Python Package Index
– https://pypi.org/
– The official Python package registry. It is used by the pip tool, and

all related tools, to install Python packages.
– See also: crates.io.

• RAD (n., acr.): Rapid Application Development
– A software development methodology which focuses on rapid proto-

typing and iteration.
• Transpiler (n.): A term to refer to a compiler which translates specifically

from a high-level language to another high-level language
– See also: compiler.

6 Bibliography
Behnel, S. et al. (2011) ‘Cython: The Best of Both Worlds’, Computing in
Science & Engineering, 13(2), pp. 31–39. Available at: https://doi.org/10.1109/
MCSE.2010.118.

Behnel, S. et al. (2023) ‘Cython: C-Extensions for Python’. Available at:
https://cython.org/ (Accessed: 11 October 2023).

Bugden, W. and Alahmar, A. (2022) ‘Rust: The Programming Language for
Safety and Performance’. Available at: https://arxiv.org/abs/2206.05503.

12

https://pypi.org/
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://cython.org/
https://arxiv.org/abs/2206.05503

dragostis et al. (2023) ‘pest. The Elegant Parser’. Available at: https://pest.rs/
(Accessed: 18 October 2023).

Ewing, G. (2010) ‘Pyrex - a Language for Writing Python Extension Modules’,
Pyrex. Available at: https://www.csse.canterbury.ac.nz/greg.ewing/python/Py
rex/ (Accessed: 11 October 2023).

Lunnikivi, H., Jylkkä, K. and Hämäläinen, T. (2020) ‘Transpiling Python to
Rust for Optimized Performance’, in A. Orailoglu, M. Jung, and M. Reichenbach
(eds) Embedded Computer Systems: Architectures, Modeling, and Simulation.
Cham: Springer International Publishing, pp. 127–138.

PyO3 Developers (2023) ‘PyO3: Rust bindings for the Python interpreter’,
GitHub. Available at: https://github.com/PyO3/pyo3 (Accessed: 18 October
2023).

The PyPy Project (2022) ‘RPython Language’. Available at: https://rpython.re
adthedocs.io/en/latestrpython.html/ (Accessed: 11 October 2023).

The PyPy Team (2023) ‘PyPy’. Available at: https://www.pypy.org/ (Accessed:
11 October 2023).

windelbouwman et al. (2023) ‘RustPython’. Available at: https://rustpython.g
ithub.io/ (Accessed: 18 October 2023).

13

https://pest.rs/
https://www.csse.canterbury.ac.nz/greg.ewing/python/Pyrex/
https://www.csse.canterbury.ac.nz/greg.ewing/python/Pyrex/
https://github.com/PyO3/pyo3
https://rpython.readthedocs.io/en/latestrpython.html/
https://rpython.readthedocs.io/en/latestrpython.html/
https://www.pypy.org/
https://rustpython.github.io/
https://rustpython.github.io/

	Introduction
	Background
	Aim
	Objectives
	Product Overview
	Scope
	Audience

	Background Review
	Prior Art
	Pyrex
	Cython/Cythonize
	RPython

	Related Work
	PyO3
	RustPython
	PyPy

	Literature
	Cython: The Best of Both Worlds
	Transpiling Python to Rust for Optimized Performance
	Rust: The Programming Language for Safety and Performance

	Methodology
	Approach
	Software Development Model
	Requirement Gathering Method
	Testing and Evaluation Process

	Technology
	Version Management Plan

	Project Management
	Activities
	Run-time Library (Rust)
	Run-time Library (Python)
	Compiler

	Schedule
	Data Management Plan
	Deliverables

	Glossary
	Bibliography

